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On the estimation of the tensile strength of 
carbon fibres at short lengths 
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Generally, to determine the fibre-matrix interfacial properties in fibre reinforced plastics, it is 
necessary to know the tensile strength of the fibre at very short lengths, for which direct 
measurements are not possible. Accordingly, in this study, the determination of the tensile 
strength of high strength carbon fibres and their gauge length dependence are analysed by 
means of the Weibull model. The influence of the estimator chosen and of the sample size on 
the calculated value of the tensile strength of the fibre are first determined. Secondly, the 
accuracy of the three- and the two-parameter Weibull distributions is examined. Finally, it is 
shown that the most appropriate extrapolation at short length is performed by means of a 
linear logarithmic dependence on gauge length of the tensile strength. This method seems to 
be valid for untreated as well as for surface-treated high strength carbon fibres. 

1. In troduct ion  
The structure and the properties of the fibre-matrix 
interface play a major role in the mechanical and 
physical properties of composite materials. In par- 
ticular, the fibre-matrix interfacial shear strength is 
one of the most important parameters in determining 
the strength and toughness of a unidirectional com- 
posite, since the load working on the composite is 
transmitted to the fibre through the interface. In order 
to relate the strength of  unidirectional carbon fibre 
reinforced plastic composites to the strength of their 
constituents, it is, therefore, necessary to know as 
precisely as possible the value o f  this fibre-matrix 
interfacial shear strength. However, according to the 
theories generally used in this domain [1-3], this shear 
strength is dependent on the tensile strength of the 
fibre at lengths corresponding to the fibre-resin trans- 
fer length, usually called the critical fibre length l~ [2]. 
For example, the value of/u is generally equal to about 
0.5 mm or less for carbon fibre reinforced epoxy resin. 
Consequently, it is impossible to carry out experi- 
mental measurements of individual fibre strength at 
these short lengths and most analyses extrapolate fibre 
mean strength and strength distribution data obtained 
at longer lengths, i.e. 3 to 100ram. The most widely 
used expression for this extrapolation is the cumulat- 
ive distribution function proposed by Weibull [4, 5]. 
This statistic is based on the "weakest link hypoth- 
esis" which means that the most important flaw in the 
fibre will control its strength. Nevertheless, the extra- 
polation of strength at critical length l~ has to be 
examined very carefully and accordingly, the object of 
the present paper is to determine the influence on the 
calculated values of fibre tensile strength (i) of the dif- 
ferent Weibull distributions (two or three parameters), 
(ii) of the different estimators defining the cumulative 
failure probability and (iii) of the dependence of fibre 
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strength on length. The fibres considered in this study 
are high strength carbon fibres, denoted HT carbon 
fibres according to Donnet et al. [6], based on poly- 
acrylonitrile. As an example, the value of the fibre 
tensile strength at a given critical length, experimen- 
tally determined in a previous study [7], is estimated in 
each case. Comparisons are, therefore, made between 
the different results in order to choose which type of 
extrapolation is the most appropriate one. 

2. Theory  
The three-parameter Weibull distribution [4, 5] is 
given by 

where P is the cumulative probability of  failure of a 
fibre of  length l at applied stress ~, m is a shape 
parameter known as the Weibull modulus, o- 0 a scaling 
parameter and au a threshold stress below which the 
failure probability is zero. To establish this equation, 
a single flaw population (volume or surface flaws) and 
a time independent strength are assumed. It is also 
assumed that compressive stresses do not contribute 
to fracture. 

The following four estimators are generally used to 
calculate the probability of failure Pi for the i th 
strength 

i -  0.5 
P~ - N (2) 

i 
P, - ( 3 )  

N + I  

i -  0.3 
-- (4) 

N +  0.4 
and 

i - -  3/8 
P' - N + 0.25 (5) 
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where N, the sample size, is the total number of speci- 
mens tested. As demonstrated elsewhere [8], for sample 
sizes less than about 50, the estimator defined by 
Equation 2 leads to less biased m values than the other 
ones and should therefore be preferred [9, 10]. 

It is possible to determine the parameters a0, G and 
m by rewriting Equation 1 as follows 

ln(1 - P) = -l(0---o0o-u) m (6) 

where (1 - P) is now the probability of survival at 
stress 0-. Equation 6 can also be written 

l n [ l n ( l ~ ) ]  = r a i n ( o - - G )  

+ (In l - m In 0-o) (7) 

Therefore, experimental data plotted in the form of 
In {ln [1/(1 - P)]} against in (0- - or,) give a straight 
line if the Weibull treatment is appropriate. The par- 
ameters m, the slope of this straight line, 0-0 and o-, can 
be dietermined by a simple least squares method. It 
must be noted that, in this case, 0-u is an adjustable 
parameter and, therefore, partly defines the value of 
the other parameters. Sometimes, such a plot gives 
two or more different straight lines. This means that 
the fibres exhibit multiple modes of failure and it is 
therefore necessary to use a more complex statistics, 
i.e. a bi- or multi-modal Weibull distribution. 

Finally, the mean strength aw is given by 

0-w = G + o-ol-'/"F(1 + 1 )  (8) 

where F is the gamma function. 
It follows from Equation 8 that the mean failure 

strength o~, and o- 2 of two specimens of the same 
material with respective length t~ and/2 are related by 
the equation 

= + ( 0 - , _  \~,7 (9) 

This is a useful result, since the mean failure strength 
for a small length/2 can be estimated from the observed 
mean failure strength of a sample of large length l~. 
Nevertheless, it is implicitly assumed that m, 0-0 and 0-, 
are not dependent on the gauge length. 

The three-parameter function (Equation 1) can be 
used when it is assumed that the fibre has a minimum 
strength. However in general, it is recommended to 
take G = 0 for brittle materials since as observed 
elsewhere [8] the Weibull distribution with G = 0 
leads to the least-biased results. 

Consequently, for the two-parameter (m and o0) 
Weibull distribution, Equations 7, 8 and 9 are respec- 
tively modified as follows 

o-w 

0" 2 

lnI'n( )l = - m l n o -  + ( l n l - -  m l n a o )  

(10) 

aol-~/mF(1 + 1)  (11) 

( t 'C  (,2) o-, 

The values of rn and o0 are now determined by a least 
squares method without adjustable parameter. 

For two- or three-parameter unimodal distri- 
butions, the Weibull modulus m is related to the coef- 
ficient of variation CV by the expression 

CV = ( F ( I  + 2/m) ) 1/2 
F2(+ l/m) 1 (13) 

At large values of m (m > 8), CV becomes equal to 
about 1.2/m. The coefficient CV is concerned with the 
variation of the distribution since it is also equal to the 
ratio of the strength standard deviation to the mean 
strength. 

As seen above, knowing the Weibull parameters, it 
is easy to extrapolate (Equations 9 and 12) at short 
lengths the value of the mean fibre strength, if this 
strength was previously determined at any large 
gauge length. However, it is possible to carry out this 
extrapolation in another way, by taking the logarithm 
of 0-w in Equation 11 as follows 

l [ (  
lno-w - l n l +  In 0-0F 1 + (14) 

m 

It is seen that a graph o f ln  (%) plotted against In (/) 
should be linear with a slope ( -  l/m). Thus, the tensile 
strength of a fibre at a given length could be easily 
estimated in this way by testing single fibres of a range 
of gauge lengths. 

Consequently, three methods can allow us to deter- 
mine the mean tensile strength of a fibre at any length: 
for the first two (three- or two-parameter Weibull 
distributions) it is necessary to know the Weibull par- 
ameters and the mean fibre strength at a given length; 
for the third (linear extrapolation using Equation 14) 
it is only necessary to know the mean fibre strength at 
different gauge lengths. The aim of this paper is to 
determine which method is the most appropriate one 
in the case of HT carbon fibres. 

3. Experimental details 
Two types (T1 and T2) of high strength PAN-based 
carbon fibres were used in this study. These fibres were 
untreated and unsized. In a separate set of experi- 
ments, oxidized T1 fibres were also employed. They 
has received an electrolytic surface treatment in order 
to increase the fibre-matrix adhesion in composites. 
The mean diameter of all these fibres was almost 
constant and equal to 7 x 10 -6 m. Their mechanical 
properties were determined on monofitaments, care- 
fully extracted from a 6 K bundle, at different gauge 
lengths lg varying from about 3 to 100mm. Each 
monofilament was glued with. epoxy resin on a card- 
board frame cut at a span length equal to the given 
gauge length and maintained in its initial shape by 
means of two clips. Then, the frame, holding the 
carbon fibre, was carefully put into the clamps of an 
Instron 1195 H tensile testing machine. Prior to test- 
ing, the true gauge length was precisely measured in 
each case with a travelling microscope. For each set of 
experiments, the scatter on the gauge length did not 
exceed about 0.3mm. Tensile strengths were deter- 
mined at a constant cross-head speed of 0.5 mm min 
All the samples for which failure occurred nearby the 
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clamps were rejected. About 20 monofilaments were 
tested for each gauge length, excepted for lg = 
27.55 mm where N = 85. Whatever the experimental 
conditions, the modulus of elasticity and the strain at 
failure of these HT carbon fibres were found equal to 
240 _+ 15GPa and 1.5 _ 0.2% respectively. 

At each gauge length, three- and two-parameter 
Weibull statistics were applied according to Equations 
1 to 13. Linear fittings were always obtained by a 
classical least-squares method with a coefficient of 
correlation r 2. The value of the adjustable parameter 
~r u was determined by the highest value o f / .  

Finally, the tensile strength af(lc) of the fibres at 
their critical length lc in epoxy resin, determined in a 
previous s tudy [7] by a fragmentation test on single 
fibre-epoxy composites, was estimated in all cases by 
means of Weibult equations as well as by linear extra- 
polation. The experimental value of lc was always 

taken equal to 0.43 ram. Obviously, this length was 
too small to perform a direct experimental determi- 
nation of tensile strength. 

4. Results and discussion 
In order to check if the Weibull treatment is appro- 
priate for our TI carbon fibres, Fig. 1 gives, for 
example, the variation of In {In [1/(1 - P)]} with In 
at different gauge lengths lg varying from about 3 to 
100mm. In this case, the two-parameter Weibull dis- 
tribution and the estimator defined by Equation 2 are 
used. In agreement with Equation 10, straight lines 
having slope equal to the Weibull modulus m are 
obtained. Fig. 1 also shows that it is difficult to 
evidence a bi- or multi-modal distribution of  fibre 
strength as observed in other studies [11-14] for dif- 
ferent fibres. Nevertheless, in a few cases (lg = 2.94 
and 27.55mm) it could be possible to draw two 
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Figure 1 In [ - In (1 - P)] plotted against in (•) ( two-parameter  Weibull analysis) for untreated T1 carbon fibres at different gauge lengths: 
(a) 2 .94mm, (b) 4 .92mm, (c) 9 .96mm, (d) .27.55 mm,  (e) 45.96mm, (f)  100.43mm (estimator = (i - 0.5)/N).  
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T A B L E  I Influence of  the estimator on the Weibull parameters and mean TI fibre strengths (three-parameter analysis; gauge 
length = 2755 mm; sample size = 85). 

Estimator m % a .  a,~ fl CV ar(l~) 

(GPa) (GPa) (GPa) (%) (GPa) 

i - 0 . 5 I N  2.67 31.325 1.877 3.127 0.988 40.3 7.822 
i / N  + I 2.92 26,202 1.750 3.127 0.993 37.2 7,463 
i - 0 . 3 / N  + 0.4 2.79 28.513 1.820 3.127 0.990 38.8 7.623 
i - 3 / 8 / N  + 0.25 2.75 29.378 1.840 3.127 0.990 39.3 7.684 

straight lines of different slopes, thus defining two 
different modes of fibre failure. However, this 
presumed bi-modal strength distribution is not system- 
atically found in the other graphs. It is particularly 
clear for Ig = 27.55 which is a unique case of  sup- 
posed bi-modality in this range or gauge lengths. 
Therefore this assumption can be rejected. It is more 
hazardous to suppose that a unimodal strength distri- 
bution can describe the results at lg = 2.94 mm. It is 
possible that a new mode of  fibre failure appears at 
these short gauge length. Experiments at shorter 
lengths should be carried out in order" to confirm or 
disprove this fact, but the difficulty of making tensile 
strength measurements at gauge lengths inferior to 
about  2.5 to 3 mm is considerable. 

Finally, it is concluded that the uni-modal Weibull 
model can be used to describe the strength behaviour 
of HT carbon fibres. 

Tables I and II show the influence of the estimator 
chosen (Equations 2 to 4) on the Weibull parameters 
m, cr 0 and G for three- and two-parameter distri- 
butions respectively, at a given gauge length Ig = 
27.55 mm. It appears that the results are not or only 
slightly modified by the mathematical form of the 
estimator. In particular, the values of the modulus rn 
are only affected by a few per cent. For this gauge 
length the arithmetical mean of the tensile strength 
~rar~ h was found to be 3.124 GPa. The mean strengths 
o- w determined by the three- or two-parameter Weibull 
distributions are very close to this value in all cases as 
shown in Tables I and II. As expected, it also appears 
that the coefficient of  correlation r 2 is higher in the 
case of  three-parameter function, since an adjustable 
parameter au is used, than in the case of two-parameter 
distribution. It must be noted, however, that au takes 
very high values, equal to about half those of aw. 
Moreover, the values of  CV indicate that the variation 
of  the distribution is more important for a three- 
parameter determination than for a two-parameter 
o n e .  

Finally, in both cases, estimated values (Equations 
9 and 12), of the tensile strength c~r(lc) of the fibre at the 
critical length lc = 0.43 mm are also given in Tables I 
and II respectively. It is thus shown that the choice of  

an estimator does not affect the value of af(/c), whereas 
the method used (three- or two-parameter) does con- 
siderably change this value. 

In agreement with other studies [8-10], since the 
mathematical form of  the estimator is not an import- 
ant parameter in determining the strength of HT 
carbon fibres, the estimator defined in Equation 2 will 
be used by now to calculate the cumulative failure 
probability P. 

Table III gathers the results concerning the influ- 
ence on the Weibull parameters of  the sample size N. 
These results are given as examples and correspond 
only to a two-parameter Weibull function (a, = 0) 
and at a gauge length lg = 27.55 ram. Experimentally, 
15 measurements of  tensile strength are first obtained 
and then the sample size is progressively increased by 
steps of  l0 specimens until N = 85. It is seen that the 
coefficient of correlation r 2 first increased to reach a 
constant value for N greater than or equal to 35. At 
the same time, the modulus m and the coefficient of  
variation CV are very slightly affected for all the 
values of  N except for the smallest one. Whatever the 
sample size, the values of aw and O'arit h are identical. It 
is also shown that ar(lc), calculated by Equation 12, is 
kept almost constant in the range of sample sizes 
studied, the relative scatter on the mean value of o-r(lc ) 
being less than about + 3%. Similar results are 
obtained for a three-parameter Weibull analysis. 
Consequently, it could be concluded that a sample size 
equal to about 20 is sufficient to obtain results which 
are statistically valid and, in particular, to lead to a 
good estimation of the tensile strength of  the fibre at 
short lengths. Hence, for the continuation of this 
paper, the sample sizes will be always equal to about 
20. 

Tables IV and V present the results concerning the 
influence of the gauge length ~ on the parameters m, 
or0, au and the mean fibre strengths for three- or two- 
parameter Weibull distributions respectively. It imme- 
diately appears that, in both cases, m, % and cr u are 
not constant and accordingly the values of ar(lc) 
(Equations 9 and 12 respectively) are greatly affected. 

Whatever the gauge length, the values of crdlc) and 
the dispersion on these values are greater in the case of  

T A B L E  II Influence of  the estimator on the Weibull parameters and mean TI fibre strengths (two-parameter analysis; gauge 
length = 27.55 mm; sample size = 85). 

Estimator m % a~ r 2 CV ~rf(l¢) 
(GPa) (GPa) (%) (GPa) 

i - 0 . 5 / N  7,77 9.632 3.124 0.958 15.2 5.334 
i / N  + l 7.43 ]0.128 3.120 0,973 15.9 5.461 
i - 0 . 3 / N  + 0.4 7.62 9.844 3.122 0.966 15.5 5.388 
i - 3 / 8 / N  + 0.25 7.68 91768 3,123 0.963 15.4 5.369 
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T A B L E  I I I  Influence of  the sample size on the Weibull parameters and mean T1 fibre strengths (two-parameter analysis; gauge 
length = 27.55mm; estimator = (i - 0 . 5 ) / N ) .  

N m a 0 r 2 a w CV aarit h af(lc) 
(GPa) (GPa) (%) (GPa) (GPa) 

15 9.62 8.047 0.905 3.233 12.5 3.235 4.982 
25 9.03 8.311 0.9 t4 3. I48 13.2 3.149 4.989 
35 7.98 9.437 0.966 3.149 14.9 3.150 5.304 
45 7.98 9.333 0.968 3.115 14.9 3. t 15 5.246 
55 7.84 9.404 0.956 3.076 15. l 3.076 5.230 
65 7.88 9.395 0.956 3.091 15.1 3.091 5.242 
75 8.23 8.964 0.960 3.094 14.4 3.094 5.127 
85 7.77 9.632 0.958 3.124 15.2 3.124 5.334 

T A B L E  IV Influence of  the gauge length on the Weibull parameters and mean Tl  fibre strengths (three-parameter analysis; estimator 
= (i - 0.5)/U). 

l~ N m a 0 0"~ r 2 % CV o'~ri~ h af(l~) 
(mm) (GPa) (GPa) (GPa) (%) (GPa) (GPa) 

2.94 21 3.89 7.480 2.860 0.979 4.294 28.8 4.293 5.210 
4.92 18 6.41 10.198 0.314 0,985 3.731 18.2 3.733 5.311 
7.37 21 5.48 15.377 0 0.968 3.989 21.1 3.984 6.698 
9.96 22 5.18 11.813 0.800 0,994 3.480 22.2 3.480 5.713 

12.15 19 2.84 29.609 1,690 0.975 3.594 38.2 3.588 7.871 
14.88 25 2.99 23,150 1.700 0.960 3.290 36.5 3.285 6.908 
19.82 24 1.88 73.923 2,550 0.972 3.516 55.2 3.506 9.925 
27.55 85 2.67 31.325 1.880 0.988 3.127 4"0.3 3.124 7.822 
35.80 23 4.59 20.679 0,030 0.963 2.969 24.8 2.967 7.733 
45.96 22 5.15 16.475 0.256 0,980 3.010 22.3 3.009 7.072 

100.43 18 2.71 38.539 1.380 0.978 2.381 39.8 2.377 8.874 

the three-parameter function than those of the two- 
parameter  function. On the contrary, the coefficient of  
variation CV is lower for the two-parameter method 
than for the three-parameter one. As discussed in the 
theoretical section, it is assumed that the Weibull 
parameters are independent of  the gauge length in 
order to estimate the tensile strength of the fibres at 
any lengths. Experimentally, it is now clearly proved 
that this assumption is not valid and the measure- 
ments at each gauge length lead to a value of the 
tensile strength different from the other one. Never- 
theless, as already shown, whatever the gauge length, 
the arithmetical O'arlt h and the Weibull aw mean 
strengths are almost identical in both cases. Finally, 
we can conclude that the three- or two-parameter  
Weibull distributions, although they are well adapted 
to describe the strength behaviour of  high strength 
carbon fibres at a given gauge length, are not appro- 
priate to estimate their tensile strength at short 
lengths. 

It is, therefore, necessary to verify if the last method 
presented above and corresponding to Equation 14, 
i.e. a logarithmic dependence of mean strength on 
gauge length, can be used for this kind of estimation. 
It has been well established that in all cases, whatever 
the factor examined in this study (estimator, sample 
size and gauge length) the mean fibre strengths O'arit h 
and aw are equal. Therefore, it is easier to use directly 
the values of  a,t~th than the other ones in Equation 14. 

Fig. 2 shows, that for the 11 gauge lengths listed in 
Tables IV or V, such a linear relationship does indeed 
exist. The following parameters can then be calculated 
according to Equation 14. 

m = 6.73 

cr 0 = 5.435GPa 

CV = 17.43 

and 

.r 2 = 0 . 9 0 6  

T A B L E V Influence of the gauge tength on the Weibult parameters and mean TI fibre strengths (two-parameter analysis; estimator = 

(i - 0.5)/N). 

tg N m a 0 ? a~ CV %i,h e~.(l~) 
(mm) (GPa) (GPa) (%) (GPa) (GPa) 

2.94 21 12.62 7.212 0.959 4.291 9.7 4.293 4.996 
4.92 18 7.06 10,082 0.985 3,730 16.6 3.733 4.766 
7.37 21 5.48 15.377 0.968 3,989 21. I 3.984 6.698 
9.96 22 6.94 10.589 0.993 3.478 16.9 3.480 5.470 

12.15 19 5.93 13,596 0.961 3,587 19.6 3.588 6. 298 
14.88 25 6.84 10.779 0.947 3.285 17.2 3.285 5.515 
19.82 24 8.38 9.586 0.917 3.505 14.2 3.506 5.536 
27.55 85 7.77 9.632 0.958 3.124 15.2 3.124 5.334 
35.80 23 4.64 20.425 0.963 2.969 24.5 2.967 7.693 
45.96 22 5.70 15.193 0.979 3.009 20.3 3.009 6. 827 

100.43 18 7.18 9.617 0.946 2.376 16.4 2.377 5.077 
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Figure 2 Mean tensile fibre strength plotted against gauge length in 
logarithmic scale for untreated Tt  carbon fibres. 

a= 

"E  

f f i  

0 ' I ' ' 5 ' ' 5 

In Lg 

Figure 4 Mean tensile fibre strength plotted against gauge tength in 
logarithmic scale for oxidized T1 carbon fibres. 

As previously done, the tensile strength ~rf(/c) of the 
fibre at the critical length lc = 0.43 mm can be easily 
estimated and the value of 5.748 GPa is obtained. This 
value is rather different from the other ones listed in 
Tables I to V. It appears that this method is the most 
accurate and the simplest one in order to be able to 
extrapolate at very short length the tensile strength of 
carbon fibres. This confirms other published results 
[12, 15-18]. It is worth noting that this method does 
not need any estimator, since we use directly Oar~th, or 
any other parameters previously determined at long 
lengths. Moreover, unique values of  m, a 0 and af(tc) 
are obtained. Nevertheless, it is necessary to carry out 
experiments at, at least, six or seven different gauge 
lengths. This can be easily made, without any risk, by 
taking sample sizes equal to about 20 for each gauge 
length. 

As shown in Fig. 3, this method also describes well 
the length dependence of strength of the T2 carbon 
fibres. The measurement are made at seven different 
gauge lengths and for sample sizes equal to about 50 
in each case (total number of specimens tested = 390) 
[19]. The calculated parameters of the straight line are 
the following 

and 

m = 1 1 . 5 5  

~0 = 4.120GPa 

CV = 8.65% 

r 2 = 0.993 

Thus, it appears that the tensile strength of  T2 fibres 
are less dependent on length than for T1 fibres. This 
can be explained by a flaw density of  the T2 fibres 
greater than that of  T1 fibres, since its Weibull modu- 
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Figure 3 Mean tensile fibre strength plotted against gauge length in 
logarithmic scale for untreated T2 carbon fibres. 

lus m is greater. This is confirmed by the calculation of 
their tensile strength at lc. We find ar(lc) = 4.240 GPa 
which is about 25% lower than the o-f(/c) value 
(5.748 GPa) for T1 carbon fibres. 

It is well known that appropriate surface treatments 
can modify not only the chemical surface properties of 
a fibre but also its mechanical behaviour and, in par- 
ticular, its tensile strength by creating a great number 
of  new flaws. Accordingly, the length dependence of  
the tensile strength of  oxidized T1 carbon fibres was 
studied. Fig. 4 shows again that a linear relationship 
betwen O-ar~t h and [g in logarithmic scales can be estab- 
lished for six different gauge lengths and for sample 
sizes of about 20 (125 specimens). The following values 
of  the parameters are obtained 

m = 6.06 

% = 5.716GPa 

CV = 19.2 

and 

r 2 = 0 .956 

Surprisingly, the value of the modulus m is lower 
than the one corresponding to untreated T1 fibres 
(m = 6.73). It is however conceivable that the oxi- 
dation treatment can reduce the surface flaw den- 
sity (or the stress concentration at the tip of  the flaws) 
by a simple phenomenon of  etching teading to a 
smoother surface. This result points out to the fact 
that the fibre surface flaws seem to be the most import- 
ant flaws in controlling the strength of  H T  carbon 
fibres. 

5. Conclusion 
In this study, the determination of  the tensile strength 
of high strength carbon fibres and its gauge length 
dependence was analysed by means of the Weibull 
model. It was first shown that the mathematical form 
of the estimator chosen and the sample size, when 
higher than about 20, do not influence the results. 
Secondly, it appeared that the three- as well as the 
two-parameter Weibull distribution are not well 
appropriate to describe the length dependence of  the 
fibre strength since the experimentally determined 
parameters are not independent on gauge length as 
stated by the theory. Finally, it was shown that a 
linear logarithmic dependence of  strength on gauge 
length is the most accurate and the most simple method 
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to extrapolate the fibre tensile strength at short 
lengths. This method seems to be of wide applicability, 
at least for high strength carbon fibres, since it also 
works well on the surface treated fibres. 
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